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Higher Order Modes in Square Coaxial Lines
L. GRUNER, MEMBER, IEEE

Abstract —The cutoff frequencies of higher order modes in square
coaxial lines are presented and compared with those of circular coaxial

lines having the same mean circunference. It is noted that while the

characteristics of the dominant TE ;4 mode and the next TE;, mode in the
square line differ but little from those of their circular counterparts,
the same conclusions do not hold in general for the remainder of the mode
spectrum.

1t is well known that a pair of independent waves having a
horizontal and a vertical polarization may be supported by wave-
guides having either a circular or a square cross section. The same
conclusion holds for c1rcu1ar coaxial lines as well as square
coaxial lines.

While circular coaxial lines have been used extensively in the

past, square coaxial lines may be preferable in some applications
if a) the presence of flat rather than circular surfaces offers

mechanical advantages, and b) it is desired to have an unam- .

biguously defined plane of polarization. Moreover, it may be
conjectured that in practice, at least in some instances the cross-
polarization ratio, or ability to discriminate against waves having
the undesired alternative polarization, may be superior for square
lines.

Manuscript received August 16, 1982; revised April 22, 1983,
The author is with the Department of Electrical Engineering, Monash Uni-
versity, Clayton 3168, Australia.

The higher order mode spectrum of circular coaxial lines is
very well known [1]. This may be contrasted with the fact that
published information pertaining to square lines is very incom-
plete and inadequate for most purposes. Thus a method for the
determination of the lowest (TE,, or TE;) eigenvalues of trans-
mission lines having rectangular inner and outer conductors has
been described [2] but no explicit information applicable to
square lines is available. The paper by Brackelmann ez al. [3]
deals with rectangular lines comprising inner and outer conduc-

. tors, the centers of which do not necessarily coincide and which

include coaxial lines as a special case; from the curves, a few
selected values of the cutoff frequencies of a few modes of square
coaxial lines may be deduced. Tourneur [4] arrived at the higher
order mode spectrum of a square coaxial line using a finite
elemernit method and a variational Rayleigh—Ritz procedure with
a polynomial approximation; published information is confined
to curves of the cutoff frequencies of the TE,, TE,;, TE,, and
TM,; modes for b/a ratios ranging from 0 to 0.3. Finally, the
author has independently described [5]-[7] a technique based on
field matching (just as in papers by Bezlyudova and
Brackelmann et al. [2] and [3], but differing in implementation),
applicable to rectangular coaxial lines.

The same computer program which was used to arrive at the
higher order mode spectrum of rectangular coaxial lines having
arbitrary inner and outer conductor dimensions; has been utilized
to deduce the characteristics of square coaxial lines. Calculations
were performed for aspect ratios b/a ranging from 0 to-0.95 and
the results extrapolated to include b/a =1; it may be noted that
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Fig. 1. Normalized cutoff frequencies of a square coaxial transmission line.
For comparison, cutoff frequencies of a circular coaxial line having the same
mean circumference are shown using dashed lines (curve 1—TE;; mode;
curve 2—TE,; mode; curve 3—TE;; mode; curve 4-TE, mode; curve
5—TM,, mode; and curve 6—TEj and TM;; modes).

when b/a =1 propagation cannot take place since the gap be-
tween the conductors vanishes.

Examination of the curves of Fig. 1 shows that, as one would
expect, the TE,, mode is the dominant higher order mode which
may propagate in addition to the TEM mode. The degeneracy of
the TE, and TE,, modes is preserved in the sense that the
dependence of their cutoff wavelengths on the aspect ratio b/a is
the same; the field distribution of the TEj mode is shifted by
90° relative to that of the TE;, mode, its form being otherwise
identical. It can be noted that the cutoff wavelengths of the TE,,
and the TE; modes increase monotonically as the aspect ratio
b/a is increased.

The next higher order mode is the TE;; mode, followed by
either the TM;; mode for b/a<0.1 or the TE,;, mode for
b/a>0.1. For small gaps between the inner and outer conduc-
tors, i.e., b/a approaching unity, the cutoff frequency of the TE,,
mode is only marginally higher than that of the TE;; mode.

It may be noted that the degeneracy of the TE,, and TE,
modes has been removed by the presence of the inner conductor
and the TE,, mode effectively splits up into the lower TE,,, and
the upper TE,, modes. This may be understood with reference
to the symmetry properties of the structure [8]. A rather similar
phenomenon was observed by Stalzer ef al. [9] who investigated
the mode spectrum of hollow crossed square waveguides.

Cutoff wavelengths for the TE;, and TE,; modes of a square
coaxial line are shown in Table I for five aspect ratios b/a. With
reference to [5], [6], these values were arrived at by progressively
increasing the size of the determinant and by studying the con-
vergence of the results obtained by setting it equal to zero. For all
practical purposes, the accuracy of the results obtained with the
aid of the foregoing technique is governed by the amount of
computation time used (although eventually it is limited by
roundoff errors). If desired, the above figures may be interpolated
for design purposes and more accurate results arrived at than
those obtainable by inspection of Fig. 1.

It should be noted that cutoff wavelengths of higher order
modes are also needed if knowledge of the field distribution is
required; this information can be deduced using the foregoing
theory [5], [6], although the computational effort is considerably
greater than that required to arrive at the field distribution in a

TABLE I
CurtorF WAVELENGTHS OF TE,, AND TE;; MODES; a =1
b/a 0.1 0.3 0.5 0.7 0.9
A, TEIO 2.044 2.351 2.793 3.268 3.755
A, TELL 1.415 1.438 1.540 1.706 1.900

circular coaxial line, for which explicit expressions are available
[1].

For comparison, the characteristics of the higher order modes
in circular coaxial lines [1], [10] have been shown in Fig. 1 using
dashed lines. The outer and inner radii of the circular line are
assumed to be equal to 2b/7 and 2a/m, respectively, thus
making the mean circumferences of the corresponding square
coaxial and circular coaxial lines the same and equal to 2(a + b)
in both cases.

It is clear that the characteristics of the dominant TE,, mode
in the square line differ but little from those of the TE;; mode
in the circular coaxial structure (using the nomenclature of
Marcuvitz and shown in curve 1). The same conclusions hold for
the TE;; mode in the square line and the TE,; mode in the
circular structure (curve 2) as well as the TE,; mode in the square
line and the TE; mode in the circular structure (curve 3),
respectively.

On the other hand, there is little, if any, correspondence
between various TM-mode characteristics of the two lines, and
there is no counterpart for the TE, mode in the circular line
(curve 6, same as for the TM;,; mode of the circular structure) or
for the upper branch of the TE,;, mode in the square line.

To summarize, at least for low values of the index n, the
characteristics of the TE, ; (n=0,1,2, - --) modes in the square
coaxial lines can be estimated by reference to the respective
TE, ,;; modes of a circular coaxial line having the same mean
circumference.

In general, however, if the mode spectrum as well as the field
distribution of the square coaxial line are required, a direct study
of the latter is called for.
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The Resonant Frequency of Rectangular Interdigital
Filter Elements

J. H. CLOETE, MEMBER, IEEE

Abstract — A procedure is given for the computation of the resonant
frequency of loosely coupled interdigital resonators with rectangular cross
section. The procedure is based on the use of Getsinger’s fringing capaci-
tance data [1]. The accuracy of the method was verified experimentally and
found to be approximately 1 percent for a 2-percent bandwidth interdigital
linear-phase filter.

I. INTRODUCTION

Certain microwave structures, such as interdigital filters, are
constructed using an array of parallel coupled rectangular cross-
sectional resonators [1]. The side view of an interdigital resonator
is shown in Fig. 1 and a plan view in Fig. 2. The geometry of the
resonator end is shown in Fig. 3. The resonator has width w,
thickness ¢, and length /”. It is symmetrically enclosed in a cavity
of length [, formed by two parallel plates with ground plane
spacing b. The cavity is filled with a homogeneous dielectric of
relative permittivity €,. One end of the resonator is short circuited
by the vertical wall of the cavity, while the open end is separated
from the other vertical wall by a gap of length g.

It is assumed that only the TEM mode propagates, and that
the interdigital resonator can be represented by the equivalent
circuit of Fig. 4 where Z, is the characteristic impedance of the
rectangular cross-sectional resonator at the center frequency, and
C, is a lumped capacitance due to the gap. Z, is determined by
the cross-sectional dimensions, w, ¢, and b, and the spacing of
adjacent resonators. In practice, once w, ¢, and b have been
selected, the problem in resonator design is to find the gap length
g, which yields the correct gap capacitance C,, for a specified
resonant frequency f;.

The problem of computing the gap capacitance has been
addressed by Nicholson [2] and Khandelwal [3]. Nicholson’s
procedure is for circular cross-sectional resonators. Khandelwal’s
more elaborate procedure is useful for general cross sections.
Incidentally, Khandelwal’s procedure for computing the fringing
capacitance between the resonator tip and the end, top, and
bottom plates [3, fig. 2] is incorrect because of the addition of
2CY, to 2¢4,. Getsinger’s odd-mode capacitance 2y, is the total
fringing capacitance to ground, and includes the effect of top and
bottom plates as well as the end plate [1, fig. 6(a)].

The procedure described here is applicable to loosely coupled
resonators of rectangular cross section, is simple to use, and has
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formed part of a Ph.D, dissertation in the Department of Electncal and
Electronic Engineering at the University of Stellenbosch. The supervisor was
Prof. J. A. G. Malherbe.

The author is with the Department of Electronic Engineering, University of
Pretoria, Pretoria 0002, South Africa.

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 9, SEPTEMBER 1983

SO\ N AN\
N A Ny !
\V 7 Qi \
N M NT i
AN ANNNNNRNNNN AN\
v -+ ¢
L4
Fig. 1. Side view of an interdigital resonator.
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Fig. 2. Plan view of an end resonator showing boundary conditions.
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Fig. 3. Geometry of the resonator end.
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Fig. 4. Resonator equivalent circuit.

given good results in the design of a narrow-band interdigital
linear-phase filter.
II. THE GAP CAPACITANCE
The cavity length is

I=Xo/(4/e,) (1)

where A, is the free-space wavelength at the desired resonant
frequency f,.

0018-9480 /83 /0900-0772$01.00 ©1983 IEEE



